Professor Anne Osbourn

Director of the Norwich Research Park Industrial Biotechnology Alliance Molecules from Nature

Biography

Anne investigates plant natural product biosynthesis.

Anne’s discovery that the genes for many of these pathways are organised in clusters in plant genomes like ‘beads on a string’ has greatly accelerated the ability to find new pathways and chemistries of potential importance for the development of drugs and other useful compounds.

She has also developed a synthetic biology platform for rapid gram-scale production, using triterpenes as an exemplar.

  • Triterpene biosynthesis, enzyme and pathway discovery
  • Genome mining for natural product pathways
  • Production of natural products and analogs for drug and chemical discovery programmes

An important advance from their lab has been the discovery that genes for specialised metabolic pathways are organised in ‘operon-like’ clusters in plant genomes, a finding that has opened up new opportunities for pathway discovery through genome mining, metabolic engineering and synthetic biology.

Terpene pathway discovery, elucidation and engineering.  The terpenes are one of the largest and most diverse classes of plant-derived natural products and have a wide range of applications in the agriculture, pharmaceutical, food and manufacturing industries. These compounds have a high degree of structural complexity, making them inaccessible to organic synthesis or classical combinatorial chemistry.

The lab have characterised an extensive set of genes and enzymes for triterpene biosynthesis and are using this toolkit to engineer structurally diverse molecules so that we can investigate the relationship between structure and function.  They aim to create new methods, platforms and technologies for the rapid discovery, synthesis and modification of triterpenes that would not otherwise be accessible.

Operon-like gene clusters and synthetic traits. Plant genomes contain thousands of genes with predicted functions in secondary metabolism, but the metabolic diversity of plants remains largely unexplored. They are exploiting the discovery that genes for the synthesis of different classes of specialised metabolite are organised in ‘operon-like’ clusters in diverse plant species to discover new metabolic pathways and chemistries and to gain insights into plant genome structure, organization, regulation and evolution.

They are also using synthetic biology approaches for cluster engineering and to make functional synthetic clusters (potential ‘syntraits’).

In addition to the above, Anne developed and co-ordinate the Science, Art and Writing (SAW) Initiative, a cross-curricular science education outreach programme. Anne is also passionate about Popular Science Writing.

Selected Publications

See all of Professor Anne Osbourn's publications

Opportunities

There are a number of different opportunities within the Anne Osbourn lab.

Postdoctoral Research positions

We are looking for outstanding applicants who have or are near completing a PhD in an appropriate discipline (ranging from plant biology and chemistry through to structural and computational biology). Opportunities that are available immediately include a Postdoctoral position for a talented natural product chemist with experience of terpene analysis and structural determination by NMR; also one or more postdoctoral positions for outstanding bioinformaticians who are interested in applying their expertise to understanding metabolic diversification in plants. Check out or current vacancies page for more information.

If you are a highly motivated scientist who would like to apply innovative approaches to natural product biology, send your CV, a list of publications, the names and addresses of three people who can supply recommendations and a covering letter describing your research interests and professional goals.

Writers and artists

Writers and artists are also very welcome to contact Anne Osbourn to explore opportunities for interdisciplinary interactions.

Send applications and enquiries to;

Professor Anne Osbourn
Director, Norwich Research Park Industrial Biotechnology and Bioenergy Alliance
John Innes Centre
Norwich Research Park
Norwich
UK
NR4 7UH