Prof Tony Maxwell

Project Leader
Biological Chemistry

Our lab investigates the structure and mechanism of DNA topoisomerases and associated proteins, to further our understanding of key biological processes in which they are involved, and to harness this knowledge for the development of therapeutic agents, specifically antibiotics.  This work is carried out within the MfN ISP under Theme 2: Biological Context (Objective 2.2: Small-molecule target proteins).

Topoisomerases are vitally important enzymes involved in the control of the topological state of DNA.  Their major biological functions are in DNA replication, transcription and the control of gene expression.  Topoisomerases provide fascinating systems for studying DNA-protein interactions and energy coupling in biological systems.  Their study also has clinical relevance from the standpoint of antibacterial and anti-tumour drugs.  DNA gyrase, the enzyme from bacteria that carries out DNA supercoiling, is the target for clinically-important antibiotics.  In addition to gyrase, we are working on several related enzymes, including bacterial topoisomerase IV and the recently discovered gyrases and topo VI enzymes from plants and plasmodial species.  The work involves a wide range of methodologies including bacteriology, mutagenesis, protein engineering, plant molecular biology, enzymology, biophysical methods and X-ray crystallography.

We are also working on insect gut bacteria as a way of exploring plant toxins to assess their usefulness as potential antibiotics.  This involves analysing the microbiome of insects feeding on certain plants to obtain evidence of toxin compounds in the plant.


Tony Maxwell, who is originally from Birmingham, gained his first degree (B.Sc., 1st Class) in Biochemistry from University College London before going on to do a Ph.D. on restriction enzyme enzymology at the University of Bristol with Steve Halford.  This was followed by a 4-year postdoc with Marty Gellert (NIH, Bethesda, USA) on DNA gyrase, where he worked on structural and mechanistic aspects of the enzyme.  In 1982 he moved back to the UK where he was awarded a ‘New Blood’ Lectureship at the University of Leicester, and stayed until 2000, becoming a Professor in 1997.  During the period 1991-1997 he held a Lister-Jenner Research Fellowship.  Work at Leicester involved continued mechanistic and structural studies on gyrase and other DNA topoisomerases, and investigations into drug-targeting aspects of these enzymes.

In 2000 he moved to the John Innes Centre, which is the largest research institute for plant and microbial sciences in Europe, to be Head of the Biological Chemistry Department.  His research interests centre around DNA topoisomerases, focussing on their structure, mechanism and interaction, with a particular emphasis on antimicrobial agents; current work also includes analysis of insect microbiomes in relation to antimicrobial resistance.

Notable recent work includes: the discovery of DNA gyrase in Arabidopsis (PNAS 2004, & JBC, 2016), structure of a fluoroquinolone resistance protein from Mycobacterium tuberculosis (Science, 2005), structures of the GyrA and GyrB proteins by small angle X-ray scattering (Structure, 2005 & 2007), development of a high-throughput assay for topoisomerases (NAR, 2006), and the crystal structure of simocyclinone bound to gyrase (Science, 2009 & JMB, 2014).  He is co-author (with Andy Bates) of the book ‘DNA topology’ (OUP, 2005).


Tel: 01603 450771

New target found in search for new, more effective herbicide

read more

New target found in search for new, more effective herbicide

read more

Professor Tony Maxwell awarded a Wellcome Trust Investigator Award

read more

€85 million for new way to carry out antibiotic drug discovery

read more

Recent Publications

Nagaraja V., Godbole A. A., Henderson S. R., Maxwell A. (2016)

DNA topoisomerase I and DNA gyrase as targets for TB therapy.

Djaout K., Singh V., Boum Y., Katawera V., Becker H. F., Bush N. G., Hearnshaw S. J., Pritchard J. E., Bourbon P., Madrid P. B., Maxwell A., Mizrahi V., Myllykallio H., Ekins S. (2016)

Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis.

Scientific reports 6 p27792

Publisher’s version: 10.1038/srep27792

Austin M. J., Hearnshaw S. J., Mitchenall L. A., McDermott P. J., Howell L. A., Maxwell A., Searcey M. (2016)

A natural product inspired fragment-based approach towards the development of novel antibacterial agents

Medicinal Chemistry Communications 7 p1387-1391

Publisher’s version: 10.1039/c6md00229c

Evans-Roberts K. M., Mitchenall L. A., Wall M. K., Leroux J., Mylne J. S., Maxwell A. (2016)

DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana.

Journal of Biological Chemistry 291 p3136-44

Publisher’s version: 10.1074/jbc.M115.689554

Sipos A., Pató J., Székely R., Hartkoorn R. C., Kékesi L., Orfi L., Szántai-Kis C., Mikuová K., Svetlíková Z., Korduláková J., Nagaraja V., Godbole A. A., Bush N., Collin F., Maxwell A., Cole S. T., Kéri G. (2015)

Lead selection and characterization of antitubercular compounds using the Nested Chemical Library.

Tuberculosis 95 Suppl 1 pS200-6

Publisher’s version: 10.1016/

View All

Tony Maxwell

  • Lesley Mitchenall Research Assistant
  • Dr Thomas Germe Postdoctoral Scientist
  • Dr Monica Agarwal Postdoctoral Scientist
  • Dr Judit Voros Postdoctoral Scientist
  • Dr Ben Bax Postdoctoral Scientist
  • Natassja Bush Postgraduate Student
  • Sara Henderson Postgraduate Student
  • Shannon McKie Postgraduate Student
  • Nidda Waraich Postgraduate Student


For media enquiries, please contact the JIC communications team 01603 450962,

JIC Cookie Policy. We use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. You can find out more about the cookies by clicking here.

Accept cookies