Iron-sensing and redox properties of the hemerythrin-like domains of Arabidopsis BRUTUS and BRUTUS-LIKE2 proteins

gold Gold open access

Iron uptake in plants is negatively regulated by highly conserved hemerythrin (Hr) E3 ubiquitin ligases exemplified by Arabidopsis thaliana BRUTUS (BTS). Physiological studies suggest these are the elusive plant iron sensors, but biochemical evidence is lacking. Here we demonstrate that the N-terminal domains of BTS and BTS-LIKE2 (BTSL2) respectively bind three and two diiron centres within three closely packed Hr-like subdomains. The centres can be reversibly oxidized by O2 and H2O2, resulting in a di-Fe3+ form that is non-labile. In the reduced state, a proportion of the iron becomes labile, based on accessibility to Fe2+ chelators and reconstitution experiments, consistent with dynamic iron binding. Impaired iron binding and altered redox properties in the BTS dgl variant correlate with diminished capacity to suppress the downstream signalling cascade. These data provide the biochemical foundation for a mechanistic model of how BTS/Ls function as iron sensors that are unique to the plant kingdom.