The John Innes Centre Publications Repository contains details of all publications resulting from our researchers.

The repository also includes Open Access publications, which can be identified by the icons found on search results.

 Green open access publications are marked by the PDF icon. Click on the publication title, or the PDF icon, and read a pre-print PDF version of the publication.  Gold open access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription. 

The creation of this publications repository was funded by BBSRC.

Recent Publications

Tran N. T., Laub M. T., Le T. B. (2017)

SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription

Cell Reports (TBD) TBD

Publisher's version: TBD

ID: 57029

read more


The Structural Maintenance of Chromosomes (SMC) complex plays an important role in chromosome organization and segregation in most living organisms. In Caulobacter crescentus, SMC is required to align the left and the right arms of the chromosome that run in parallel down the long axis of the cell. However, the mechanism of SMC-mediated alignment of chromosomal arms remains elusive. Here, using genome-wide methods and microscopy of single cells, we show that Caulobacter SMC is recruited to the centromeric parS site and that SMC-mediated arm alignment depends on the chromosome partitioning protein ParB. We provide evidence that SMC likely tethers the parS-proximal regions of the chromosomal arms together, promoting arm alignment. Furthermore, we show that highly-transcribed genes near parS that are oriented against SMC translocation disrupt arm alignment, suggesting that head-on transcription interferes with SMC translocation. Our results demonstrate a tight interdependence of bacterial chromosome organization and global patterns of transcription.


Members of the Capnodiales class of fungi have evolved contrasting lifestyles on plants, ranging from biotrophy, through to endotrophy and necrotrophy. Many of these fungi contain homologs of the effector protein called Ecp2. The ‘currant’ tomato (Solanum pimpinellifolium) resistance (R) gene Cf-Ecp2 recognises Ecp2 produced by the pathogenic fungus, Cladosporium fulvum. In this study, Cf-Ecp2 was fine-mapped to the Orion locus, which contains eight Homologs of Cladosporium resistance gene Cf-9 (Hcr9s), four of which share 100% sequence identity within their open reading frame. The Cf-Ecp2 locus exemplifies the complex nature of many R gene loci brought about by successive rounds of tandem duplication. This extensive duplication renders R gene loci complex and difficult to resolve. As a consequence, the sequencing of a BAC minimal tiling path across the Cf-Ecp2 locus required use of both short read and long read sequencing technologies, with MinION providing vital scaffolding reads. A transposon mutagenesis experiment generated two deletion mutants. The mutants had lost the ability to recognise Ecp2 along with the OR2A (2A) gene from the Cf-Ecp2 locus. Wild-type tomato (Solanum lycopersicum) Cf0 stable transformants, overexpressing 2A via the cauliflower mosaic virus 35S promoter, partially recapitulated the S. pimpinellifolium CfEcp2 phenotype. Lack of penetrance of the phenotype in the transgenic plants was attributed to the functional interference of 2A overexpression. The non-host, Nicotiana paniculata TW99, also recognises Ecp2 from C. fulvum. N. paniculata CfEcp2 was characterised for its ability to recognise many homologs of Ecp2, including those from Mycosphaerella fijiensis (causal agent of Black Sigatoka on banana) and the wilt-  causing fungi, Fusarium oxysporum and Verticillium dahliae. The ability of Cf-Ecp2 to code for the recognition of an effector from many plant pathogens provides an exciting opportunity to engineer resistance to such pathogens in important crops. 



Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. In- terspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40 years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgres- sion of wild relative chromosome segments into wheat.

JIC Cookie Policy. We use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. You can find out more about the cookies by clicking here.

Accept cookies