Publications

The John Innes Centre Publications Repository contains details of all publications resulting from our researchers.

The repository also includes Open Access publications, which can be identified by the icons found on search results.

 Green open access publications are marked by the PDF icon. Click on the publication title, or the PDF icon, and read a pre-print PDF version of the publication.  Gold open access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription. 

The creation of this publications repository was funded by BBSRC.

Recent Publications

Borges F., Parent J. S., van Ex F., Wolff P., Martínez G., Köhler C., Martienssen R. A. (2018)

Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis.

Nature Genetics

Publisher's version: 10.1038/s41588-017-0032-5

ID: 57959

read more

Abstract

Chromosome dosage has substantial effects on reproductive isolation and speciation in both plants and animals, but the underlying mechanisms are largely obscure 1 . Transposable elements in animals can regulate hybridity through maternal small RNA 2 , whereas small RNAs in plants have been postulated to regulate dosage response via neighboring imprinted genes3,4. Here we show that a highly conserved microRNA in plants, miR845, targets the tRNAMet primer-binding site (PBS) of long terminal repeat (LTR) retrotransposons in Arabidopsis pollen, and triggers the accumulation of 21-22-nucleotide (nt) small RNAs in a dose-dependent fashion via RNA polymerase IV. We show that these epigenetically activated small interfering RNAs (easiRNAs) mediate hybridization barriers between diploid seed parents and tetraploid pollen parents (the 'triploid block'), and that natural variation for miR845 may account for 'endosperm balance' allowing the formation of triploid seeds. Targeting of the PBS with small RNA is a common mechanism for transposon control in mammals and plants, and provides a uniquely sensitive means to monitor chromosome dosage and imprinting in the developing seed.

Martinez G., Wolff P., Wang Z., Moreno-Romero J., Santos-González J., Conze L. L., DeFraia C., Slotkin R. K., Köhler C. (2018)

Paternal easiRNAs regulate parental genome dosage in Arabidopsis.

Nature Genetics

Publisher's version: 10.1038/s41588-017-0033-4

ID: 57962

read more

Abstract

The regulation of parental genome dosage is of fundamental importance in animals and plants, as exemplified by X-chromosome inactivation and dosage compensation. The 'triploid block' is a classic example of dosage regulation in plants that establishes a reproductive barrier between species differing in chromosome number1,2. This barrier acts in the embryo-nourishing endosperm tissue and induces the abortion of hybrid seeds through a yet unknown mechanism 3 . Here we show that depletion of paternal epigenetically activated small interfering RNAs (easiRNAs) bypasses the triploid block in response to increased paternal ploidy in Arabidopsis thaliana. Paternal loss of the plant-specific RNA polymerase IV suppressed easiRNA formation and rescued triploid seeds by restoring small-RNA-directed DNA methylation at transposable elements (TEs), correlating with reduced expression of paternally expressed imprinted genes (PEGs). Our data suggest that easiRNAs form a quantitative signal for paternal chromosome number and that their balanced dosage is required for post-fertilization genome stability and seed viability.

Abstract

Simocyclinones are antibiotics produced by Streptomyces and Kitasatospora species that inhibit the validated drug target DNA gyrase in a unique way, and they are thus of therapeutic interest. Structural approaches have revealed their mode of action, the inducible-efflux mechanism in the producing organism, and given insight into one step in their biosynthesis. The crystal structures of simocyclinones bound to their target (gyrase), the transcriptional repressor SimR and the biosynthetic enzyme SimC7 reveal fascinating insight into how molecular recognition is achieved with these three unrelated proteins.

JIC Cookie Policy. We use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. You can find out more about the cookies by clicking here.

Accept cookies