Publications

The John Innes Centre Publications Repository contains details of all publications resulting from our researchers.

The repository also includes Open Access publications, which can be identified by the icons found on search results.

 Green open access publications are marked by the PDF icon. Click on the publication title, or the PDF icon, and read a pre-print PDF version of the publication.  Gold open access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription. 

The creation of this publications repository was funded by BBSRC.

Recent Publications

Capstaff N. M., Miller A. J. (2018)

Improving the Yield and Nutritional Quality of Forage Crops

Frontiers in Plant Science (9)

Publisher's version: 10.3389/fpls.2018.00535

ID: 58534

read more

Abstract

Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

Moore K. L., Rodriguez-Ramiro I., Jones E. R., Jones E. J., Rodriguez-Celma J., Halsey K., Domoney C., Shewry P. R., Fairweather-Tait S., Balk J. (2018)

The stage of seed development influences iron bioavailability in pea (Pisum sativum L.)

Scientific Reports (TBC) TBC

Publisher's version: TBC

ID: 58455

read more

Abstract

Pea seeds are widely consumed in their immature form, known as garden peas and petit pois, mostly after preservation by freezing or canning. Mature dry peas are rich in iron in the form of ferritin, but little is known about the content, form or bioavailability of iron in immature stages of seed development. Using specific antibodies and in-gel iron staining, we show that ferritin loaded with iron accumulated gradually during seed development. Immunolocalization and high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that iron-loaded ferritin was located at the surface of starch-containing plastids. Standard cooking procedures destabilized monomeric ferritin and the iron-loaded form. Iron uptake studies using Caco‑2 cells showed that the iron in microwaved immature peas was more bioavailable than in boiled mature peas, despite similar levels of soluble iron in the digestates. By manipulating the levels of phytic acid in the digestates we demonstrate that phytic acid is the main inhibitor of iron uptake from mature peas in vitro. Taken together, our data show that immature peas and mature dry peas contain similar levels of ferritin-iron, which is destabilized during cooking. However, iron from immature peas is more bioavailable because of lower phytic acid levels compared to mature peas.

Lomonossoff G. P. (2018)

So What Have Plant Viruses Ever Done for Virology and Molecular Biology?

Advances in virus research (100) 145-162

Publisher's version: 10.1016/bs.aivir.2017.12.001

ID: 58335

read more

Abstract

The discovery of a new class of pathogen, viruses, in the late 19th century, ushered in a period of study of the biochemical and structural properties of these entities in which plant viruses played a prominent role. This was, in large part, due to the relative ease with which sufficient quantities of material could be produced for such analyses. As analytical techniques became increasingly sensitive, similar studies could be performed on the viruses from other organisms. However, plant viruses continued to play an important role in the development of molecular biology, including the demonstration that RNA can be infectious, the determination of the genetic code, the mechanism by which viral RNAs are translated, and some of the early studies on gene silencing. Thus, the study of plant viruses should not be considered a "niche" subject but rather part of the mainstream of virology and molecular biology.

JIC Cookie Policy. We use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. You can find out more about the cookies by clicking here.

Accept cookies