Publications

The John Innes Centre Publications Repository contains details of all publications resulting from our researchers.

The repository also includes Open Access publications, which can be identified by the icons found on search results.

 Green open access publications are marked by the PDF icon. Click on the publication title, or the PDF icon, and read a pre-print PDF version of the publication.  Gold open access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription. 

The creation of this publications repository was funded by BBSRC.

Recent Publications

Huang D., Wang X., Tang Z., Yuan Y., Xu Y., He J., Jiang X., Peng S. A., Li L., Butelli E., Deng X., Xu Q. (2018)

Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus.

Nature plants (4) 930-941

Publisher's version: 10.1038/s41477-018-0287-6

ID: 59949

read more

Abstract

The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene, Ruby2, which is adjacent to Ruby1, a known anthocyanin activator of citrus. Different Ruby2 alleles can have opposite effects on the regulation of anthocyanin biosynthesis. AbRuby2Full encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange. CgRuby2Short was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2Short has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the Ruby2-Ruby1 cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the Ruby2-Ruby1 cluster in citrus, which are unique and different from that found in Arabidopsis, grape or petunia.

Fox S., Southam P., Pantin F., Kennaway R., Robinson S., Castorina G., Sánchez-Corrales Y. E., Sablowski R., Chan J., Grieneisen V., Marée A. F. M., Bangham J. A., Coen E. .. (2018)

Spatiotemporal coordination of cell division and growth during organ morphogenesis.

PLoS Biology

Publisher's version: 10.1371/journal.pbio.2005952

ID: 59952

read more

Abstract

A developing plant organ exhibits complex spatiotemporal patterns of growth, cell division, cell size, cell shape, and organ shape. Explaining these patterns presents a challenge because of their dynamics and cross-correlations, which can make it difficult to disentangle causes from effects. To address these problems, we used live imaging to determine the spatiotemporal patterns of leaf growth and division in different genetic and tissue contexts. In the simplifying background of the speechless (spch) mutant, which lacks stomatal lineages, the epidermal cell layer exhibits defined patterns of division, cell size, cell shape, and growth along the proximodistal and mediolateral axes. The patterns and correlations are distinctive from those observed in the connected subepidermal layer and also different from the epidermal layer of wild type. Through computational modelling we show that the results can be accounted for by a dual control model in which spatiotemporal control operates on both growth and cell division, with cross-connections between them. The interactions between resulting growth and division patterns lead to a dynamic distributions of cell sizes and shapes within a deforming leaf. By modulating parameters of the model, we illustrate how phenotypes with correlated changes in cell size, cell number, and organ size may be generated. The model thus provides an integrated view of growth and division that can act as a framework for further experimental study.
 

Soubeyrand E., Johnson T. S., Latimer S., Block A., Kim J., Colquhoun T. A., Butelli E., Martin C., Wilson M. A., Basset G. (2018)

The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants.

Plant Cell

Publisher's version: 10.1105/tpc.18.00688

ID: 59961

read more

Abstract

Land plants possess the unique capacity to derive the benzenoid moiety of the vital respiratory cofactor, ubiquinone (coenzyme Q), from phenylpropanoid metabolism via ß-oxidation of p-coumarate to form 4-hydroxybenzoate. Approximately half of the ubiquinone in plants comes from this pathway; the origin of the rest remains enigmatic. In this study, Phe-[Ring-13C6] feeding assays and gene network reconstructions uncovered a connection between the biosynthesis of ubiquinone and that of flavonoids in Arabidopsis thaliana. Quantification of ubiquinone in Arabidopsis and tomato (Solanum lycopersicum) mutants in flavonoid biosynthesis pinpointed the corresponding metabolic branch-point as lying between flavanone-3-hydroxylase and flavonoid-3'-hydroxylase. Further isotopic labeling and chemical rescue experiments demonstrated that the B-ring of kaempferol is incorporated into ubiquinone. Moreover, heme-dependent peroxidase activities were shown to be responsible for the cleavage of B-ring of kaempferol to form 4-hydroxybenzoate. In contrast, kaempferol 3-ß-D-glucopyranoside, dihydrokaempferol, and naringenin were refractory to peroxidative cleavage. Collectively, these data indicate that kaempferol contributes to the biosynthesis of a vital respiratory cofactor, resulting in an extraordinary metabolic arrangement where a specialized metabolite serves as a precursor for a primary metabolite. Evidence is also provided that the ubiquinone content of tomato fruits can be manipulated via deregulation of flavonoid biosynthesis.

JIC Cookie Policy. We use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. You can find out more about the cookies by clicking here.

Accept cookies