Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals.

Starch, the major storage carbohydrate in plants, is synthesized in plastids as semi-crystalline, insoluble granules. Many organs and cell types accumulate starch at some point during their development and maturation. The biosynthesis of the starch polymers, amylopectin and amylose, is relatively well understood and mostly conserved between organs and species. However, we are only beginning to understand the mechanism by which starch granules are initiated, and the factors that control the number of granules per plastid and the size/shape of granules. Here, we review recent progress in understanding starch granule initiation and morphogenesis. In Arabidopsis, granule initiation requires several newly discovered proteins with specific locations within the chloroplast, and also on the availability of maltooligosaccharides which act as primers for initiation. We also describe progress in understanding granule biogenesis in the endosperm of cereal grains-within which there is large interspecies variation in granule initiation patterns and morphology. Investigating whether this diversity results from differences between species in the functions of known proteins, and/or from the presence of novel, unidentified proteins, is a promising area of future research. Expanding our knowledge in these areas will lead to new strategies for improving the quality of cereal crops by modifying starch granule size and shape in vivo.