Stage-Specific Gene Profiling of Germinal Cells Helps Delineate the Mitosis/Meiosis Transition.

gold Gold open access

In flowering plants, germ lines are induced from somatic meristems within reproductive organs. Within anthers, germinal cell initials first undergo several rounds of mitotic proliferation before synchronously entering meiosis. Our understanding of the progression and the molecular basis of this mitosis to meiosis transition is still limited. Taking advantage of the correlation between anther length and premeiotic germinal cell development in maize (Zea mays), we studied the transcriptome dynamics of germinal cells at three sequential stages, mitotic archesporial cells, enlarging pollen mother cells at the premeiosis interphase, and pollen mother cells at the early prophase of meiosis, using laser microdissection-based expression profiling. Our analysis showed that cells undergoing the mitosis-meiosis switch exhibit robust transcriptional changes. The three stages are distinguished by the expression of genes encoding transcription factor subsets, meiotic chromosome recombination proteins, and distinct E3 ubiquitin ligases, respectively. The transcription level of genes encoding protein turnover machinery was significantly higher in these three stages of germinal cells than in mature pollen, parenchyma cells, or seedlings. Our experimental results further indicate that many meiotic genes are not only transcribed, but also translated prior to meiosis. We suggest that the enlarging pollen mother cells stage represents a crucial turning point from mitosis to meiosis for developing germinal cells.