Meiotic chromosome organization and its role in recombination and cancer
Chromosomes adopt specific conformations to regulate various cellular processes. A well-documented chromosome configuration is the highly compacted chromosome structure during metaphase. More regional chromatin conformations have also been reported, including topologically associated domains encompassing mega-bases of DNA and local chromatin loops formed by kilo-bases of DNA. In this review, we discuss the changes in chromatin conformation taking place between somatic and meiotic cells, with a special focus on the establishment of a proteinaceous structure, called the chromosome axis, at the beginning of meiosis. The chromosome axis is essential to support key meiotic processes such as chromosome pairing, homologous recombination, and balanced chromosome segregation to transition from a diploid to a haploid stage. We review the role of the chromosome axis in meiotic chromatin organization and provide a detailed description of its protein composition. We also review the conserved and distinct roles between species of axis proteins in meiotic recombination, which is a major factor contributing to the creation of genetic diversity and genome evolution. Finally, we discuss situations where the chromosome axis is deregulated and evaluate the effects on genome integrity and the consequences from protein deregulation in meiocytes exposed to heat stress, and aberrant expression of genes encoding axis proteins in mammalian somatic cells associated with certain types of cancers.