Hyphal compartmentalization and sporulation in Streptomyces require the conserved cell division protein SepX.

gold Gold open access

Filamentous actinobacteria such as Streptomyces undergo two distinct modes of cell division, leading to partitioning of growing hyphae into multicellular compartments via cross-walls, and to septation and release of unicellular spores. Specific determinants for cross-wall formation and the importance of hyphal compartmentalization for Streptomyces development are largely unknown. Here we show that SepX, an actinobacterial-specific protein, is crucial for both cell division modes in Streptomyces venezuelae. Importantly, we find that sepX-deficient mutants grow without cross-walls and that this substantially impairs the fitness of colonies and the coordinated progression through the developmental life cycle. Protein interaction studies and live-cell imaging suggest that SepX contributes to the stabilization of the divisome, a mechanism that also requires the dynamin-like protein DynB. Thus, our work identifies an important determinant for cell division in Streptomyces that is required for cellular development and sporulation.