A high-throughput delayed fluorescence method reveals underlying differences in the control of circadian rhythms in Triticum aestivum and Brassica napus.

gold Gold open access

A robust circadian clock has been implicated in plant resilience, resource-use efficiency, competitive growth and yield. A huge number of physiological processes are under circadian control in plants including: responses to biotic and abiotic stresses; flowering time; plant metabolism; and mineral uptake. Understanding how the clock functions in crops such as Triticum aestivum (bread wheat) and Brassica napus (oilseed rape) therefore has great agricultural potential. Delayed fluorescence (DF) imaging has been shown to be applicable to a wide range of plant species and requires no genetic transformation. Although DF has been used to measure period length of both mutants and wild ecotypes of Arabidopsis, this assay has never been systematically optimised for crop plants. The physical size of both B. napus and T. aestivum led us to develop a representative sampling strategy which enables high-throughput imaging of these crops.